博一建材讯:珠钢一期引进德国FUCHS150t竖式交流电炉和SMSCSP生产线,二期新增意大利DANIELI150t预热式电炉、LF精炼炉、VOD真空处理炉、以及SMS薄板坯连铸机各1座/台。是国内唯一1条短流程CSP生产线,具有生产周期短、产品精度控制和强度控制好等一系列优点。
珠钢一直注重于新产品开发,特别是市场欢迎的高强度热轧板的开发,已开发出X52、SPA-H、ZJ510L、ZJ590L等一系列钢种,在热轧钢板的传统钢种领域,珠钢对应生产的ZJ330、ZJ400、ZJ470等系列钢种的普遍特点是在塑性不降低且更优的情况下、强度均高于类似国标钢种,创造出一种低成本生产高强度钢的生产工艺流程,低碳高强度钢(HighStrengthLowCarbon)已成为珠钢产品的一个鲜明特色。在珠钢工艺条件下生产的热轧高强度钢板有别于HSLA钢,最明显的差别是低碳、合金含量低、成分设计中没有添加任何微合金元素等,目前,珠钢开发的汽车用热轧钢板,最高强度等级已经达到600MPa。将珠钢生产的这类高强度钢统一命名为低碳高强度钢,简称HSLC钢。
珠钢热轧板的成分与性能特点
珠钢HSLC板性能特点如下:
(1)方向异性小;
(2)伸长率高。珠钢目前所有品种均达到国标或JIS标准对伸长率要求,大部分品种均有20%以上的富余量,
(3)焊接性能好。在珠钢投产以来,未发生因为焊接性能不合导致的客户投诉;
(4)组织均匀,晶粒细小;
(5)强度高。
综上述,珠钢热轧板在各向异性、伸长率、焊接性能等表现出优良的特性,当然,在某些性能指标方面,如某些钢种屈强比略高、特殊条件下存在带状组织等,其原因还在分析中。
珠钢生产工艺特点
(1)珠钢主要设备配置
炼钢系统:电弧炉/t 150×2、精炼炉/t 150×2、真空炉/t 150×1、冶炼周期/min 60
原料 :废钢、海绵铁、生铁
CSP铸机:类型 立弯式、流数1+1、坯厚度/mm 50、坯宽度/mm 1000-1350、中包容量/t 28、结晶器长度/mm 1100、拉坯速度/m·min-1 2.8-6、出坯温度/℃ 1050
辊底炉:长度/m 192、加热方式 燃油摆动式辊底炉、缓冲时间/min 20
CSP 精轧机:事故剪 液压定剪、除鳞 高压除鳞、轧机 6机架、带卷厚度/mm 1.2-12.7、带卷宽度/mm 1000-1350、卷重/t 23(最大)、工作辊直径/mm 720-800(F1-F3)540-600(F4-F6)、轧制力/t 3000、带卷冷却方式 层流冷却、卷取机 1、卷取类型 地下,踏步控制
珠钢在成分设计上不采取高合金化思路,仍能够保证生产出高强度钢的主要归因于珠钢先进的工艺控制手段,这包括洁净钢生产技术、CSP薄板坯连铸高拉速控制技术、温度控制技术以及控轧控冷技术等。
(2)洁净多生产技术
现代钢质量研究表明,提高钢水纯净度对于改善钢材综合性能具有非常重要的意义,薄板坯连铸机的生产实践也对钢水质量(成分和温度)提出严格的要求。
珠钢在采用废钢为原料、短流程工艺、无真空处理手段等不利条件下,通过优化配料、电炉全程泡沫渣控制、电炉终点控制技术、无渣出钢、优化的精炼造渣制度和吹氩控制技术以及钙处理工艺等一系列手段使珠钢精炼结束的钢水纯净度达到一个较高的水平,其中:
a[o]<3×10-6;TO<25×10-6;[N]<60×10-6;[S]<50×10-6;[P]<150×10-6;[Al]s<20×10-6;
(3)CSP薄板坯连铸高拉速控制技术
珠钢CSP薄板坯连铸机设计拉速为:4-6m/min,拉速的控制受到钢种、过热度、钢水温度等因素的限制,拉速本身同时又对铸坯组织性能及最终板卷性能产生影响,一般来说,拉速越高越有利于铸坯晶粒细化,但同时也导致铸坯表面质量恶化,同时增加了连铸漏钢的几率。因此,必须优化连铸配套的工艺条件,珠钢在连铸保护渣的研究、钢水上台温度和成分控制范围、SEN的使用等方面做了大量工作,针对不同的钢种和规格,摸索出最佳的拉速控制范围,目前,低碳钢平均的拉速水平达到5.3m/min,最高达到6m/min。
(4)温度控制技术
提高连铸连浇率是所有钢厂共的目标,对于薄板坯连铸来说,虽然拉速较宽的可调范围有利于连铸对钢水的适应性,但是,由于SEN寿命的限制,特别是由于性能稳定性的要求,多炉连浇是以稳定性为前提条件,主要是拉速的稳定,只有这样,才能保证稳定的铸坯组织和入炉温度,而拉速的稳定是以炉次见的成分和温度稳定为前提。珠钢目前已能够实现10炉(浇注时间10h)以上的稳定连浇。
另一方面,通过控制拉速和二冷水,保证出矫直机进均热炉的铸坯温度达到1000℃以上,并且铸坯表面和内部温度偏差较小,没有发生α→γ的相转变。
(5)控轧控冷技术
控轧控冷技术是珠钢在消化吸收SMS的轧制技术基础上进行优化板材性能控制的又一手段,通过对6机架间轧材中间品的解剖分析,了解到机架间轧材的组织变化,如图8和图9[3](略)所示,为控轧控冷工艺的实现创造了条件。
在控制控冷工艺方面,主要比较了不同机架不同压下力对板材性能的影响,研究了不同终轧温度、卷取温度、冷却方式、成品规格等诸冷却条件下的冷却度及对成品板材力学性能的影响规律。
随着终轧温度的降低,可以看到厚度为2.0mm的成品板的屈服强度有了明显的提高,由344MPa提高到367MPa,而其抗拉强度变化不大,均在400MPa左右。不同终轧温度下成品板的伸长率变化也较为明显,终轧温度为840℃时,成品板的伸长率较低,仅为25%,另外两种终轧温度下成品板的伸长率相对较高,分别达到了29%和30%。
当卷取温度为640℃时,成品板的屈服强度和抗拉强度都相对较低,屈服强度为320MPa,抗拉强度仅为381MPa。当卷取温度设定为550℃时,成品板的屈服强度和抗拉强度比卷取温度为640℃时都有了显著的提高,分别提高了24MPa和31MPa。在不同的卷取温度下成品板的延伸率相差不大,均在28%至30%之间。
博一网是深圳市博一建材有限公司运营的一个集建材网站建设、建材SEO优化、建材SEM营销和线上线下互动营销与传播的一个家居建材+互联网+家装的应用场景,详情敬请登陆http://m.bo-yi.com/
打赏